OBJECTIVES/COMPETENCIES

Course Objectives	Competencies
Review foundational information from the previous CMM course	 Power on and home the CMM Manually move the CMM Fixture a part per setup documentation Execute an existing CMM program Edit an existing CMM program Write basic CMM programs, given a blueprint Interpret results on dimension report Sort parts into conforming vs nonconforming per the blueprint
Understand common fixtures used to hold parts and explore fixture options that allow setups to be combined	 Use modular CMM Fixturing Assemble fixtures per on screen instructions Determine fixtures for in process inspection based on which features are completed Determine fixtures for final inspection based on a blueprint Use fixture standoffs to allow access to multiple sides of the part in one setup Import and orient CAD fixtures to show future operators how to fixture the part
Perform alignments based on blueprint datum schemes and GD&T feature control frames	 Perform a manual alignment per on screen instructions Perform an automatic alignment per on screen instructions Write a program for an automatic alignment based on blueprint datums Move and rotate alignments to match a GD&T feature control frame

Discuss advanced probe configuration, calibration, and selection	 Select probes based on part shape and orientation requirements Build stylus systems using integrated probe builder software Calibrate probes to ensure accuracy and repeatability Perform manual and automatic stylus system changes Build stylus systems to access multiple sides of the part in one setup
Understand CMM programming theory as applied to parts of increased complexity	 Understand how touch points are combined to create measured features, which are in turn used to output characteristics on the dimension report Understand direct vs indirect characteristics Use measured and constructed features to inspect tolerances that cannot be outpt directly to the dimension report Determine number of points based on feature type and tolerance Select the correct stylus based on feature depth and orientation Inspect geometric dimensions and tolerances Output graphics of geometric form variations to dimension reports
Understand how to import and manipulate CAD models to aid with setup and programming	 Discuss the difference between "teach-in" programming and CAD programming Import and position CAD parts and fixtures Utilize CAD feature extraction tools to aid with measuring features Write offline CMM programs and prove them on the machine when it is available to minimize downtime

Develop proficiency writing CMM programs for parts of increased complexity	 Determine the ideal manual alignment Program an automatic alignment using the appropriate datum schedme Determine measurement strategy, point density, number of points, and measurement speeds per industry standards Create travel paths that link all measured features together without collisions Create a dimension report including all of the blueprint dimensions Verify that all dimensions on the blueprint are accounted for in the dimension report with nothing extra Manually verify dimension using hand gauges and the 10:1 rule for gauge precision
Gain experience to working with assemblies to understand fits and clearances and how mating parts fit together	 Run CMM programs to inspect mating parts and use the dimension report results to determine if they will actually fit Understand typical datum schemes for mating parts Assemble mating parts with known feature sizes to feel how much movement is allowed by clearances from .0001 to .0100
Understand a CMM's role in a modern CNC machine shop's environment	 Simulate how a CNC operator runs an existing CMM program to perform in process inspection on their parts Use the resulting dimension report to adjust offsets on the CNC machine that manufactured the part Perform assignable cause for what is going wrong with the manucaturing process to cause nonconforming dimensions Witness the interaction between CNC operator and CMM programmer as they work together to bring processes into control