SPRINGFIELD TECHNICAL COMMUNITY COLLEGE

ACADEMIC AFFAIRS

Course Number:	MATH 439	Department:	Mathematics		
Course Title:	Linear Algebra	Semester:	Spring	Year:	1999

Objectives/Competencies

Course Objective	Competencies		
1. The skills basic to the study of Gaussian Elimination.	 Solve a system using Gaussian Elimination. Determine if a given matrix is in row-echelon form and reduced row-echelon form. Find a solution set of a system of linear equations represented by an augmented matrix. Determine if a given matrix is elementary. Perform row operations using elementary matrices. Find the inverse of a square matrix. Find the inverse of a matrix using the adjoint. 		
2. The skills basic to the study of matrix operations.	 Perform fundamental operations with matrices including addition, subtraction, scalar multiplication, and multiplication. State, prove, and apply properties of matrices. Find the transpose of a given matrix. 		
3. The skills basic to the study of determinants.	 Evaluate a determinant by its definition. Evaluate a determinant by first reducing it to triangular 		

Course Objective	Competencies		
4. The skills basic to the study of vectors and vector spaces.	 form. 3. Evaluate a determinant by cofactor expansion. 4. Solve a linear system using Cramer's Rule. 1. State the definition and perform the following vector operations: addition, subtraction, scalar multiplication, magnitude, dot product, and projection. 2. Solve vector equations. 3. Write a given vector as a linear combination of a set of vectors. 4. State and apply the definition of a vector space. 5. Verify properties of a vector space given a set and two defined operations. 6. Show that a given subset of a vector space is a subspace. 7. Show that a given set of vectors is linearly independent. 8. Show that a given set of vectors spans a vector space. 		
	 9. Show that a given set of vectors is basis for a vector space. 10.Find the dimension of a vector space. 11.Determine the rank of a matrix. 12.Find a basis for the row space and column space of a given matrix. 13.Determine the number of solutions of a linear system based on the rank of its coefficient matrix. 14.Express the vector as a coordinate vector in terms of 		
	another basis. 15.Find and apply the transition matrix with respect to		

Course Objective	Competencies		
 The skills basic to the study of Eigenvalues, Eigenvectors, and Eigenspaces. 	 transformation. 8. State the definition and describe composition of a linear transformation. 9. Find the inverse of a linear transformation. 10.State definition of similar matrices. 11.State properties of similar matrices. 11.State properties of similar matrices. 1. Find the characteristic polynomial, eigenvalues, and basis for its eigenspace for a given matrix. 2. Determine if a matrix is diagonalizable. 3. If a matrix is diagonalizable, compute matrices S and B such that the diagonal form D = SBS to the minus 1 power. 4. Find for an nxn symmetric matrix n linearly independent eigenvectors and determine that those associated with distinct eigenvalues are distinct. 5. Find for an nxn symmetric matrix and orthogonal matrix Q and a diagonal matrix D such that D = Q to the minus 1 power AQ. 6. Apply eigenvalue analysis to the solution of problems involving difference equations, Fibonacci sequence, and population growth. 		