SPRINGFIELD TECHNICAL COMMUNITY COLLEGE

ACADEMIC AFFAIRS

Course Number:	MECH 390	Department:	MET		
Course Title:	Materials and Processing for World-Class Manufacturing	Semester:	Fall	Year:	2004

Objectives/Competencies

Course Objective	Competencies		
 Understand and identify commonly used engineering materials. 	 Define the four classifications of materials: Metals, Polymers, Ceramics, and Composites. Compare and contrast the mechanical and physical properties of the different classifications of materials Define and visualize a BCC, FCC, and HCP unit cell Compare the density and relative strength between BCC, FCC, and HCP crystal structures 		
 Understand the behavior and manufacturing properties of metals, plastics, ceramics and composites. 	 Visualize mechanical properties of a metal Calculate stress as <i>σ</i> = Force/Area Calculate strain as ε = Δ L/L Generate a Stress-Strain Diagram from supplied Test Data Identify different points on the curve of the Stress-Strain Diagram Calculate Modulus of Elasticity as E= Δ σ/Δ ε in the Elastic Region of the Stress-Strain Diagram Identify the physical properties that change given different heat treatment applications. 		

Course Objective	Competencies		
 Understand why various manufacturing processes are used, and the advantages of the different processes. 	 Identify Quenching Identify Annealing Identify Martensite formation Identify Tempering Determine the correct method of quenching for a given engineering requirement. The student will determine the method using the Jominy End Quench method. Introduce the concepts and vocabulary of "polymers" with simple models Understand the terminology of casting processes, forming and shaping processes, and joining processes. Define Extrusion, Injection Molding, Compression and Transfer Molding, Blow Molding, Thermoforming, Powder Metallurgy Define green sand, plaster, investment casting, expanded polystyrene, die casting, and centrifugal casting as expendable or permanent casting methods Define Bulk deformation processes as Bending, Forging, Extrusion, or Drawing. Define Sheetmetal processes as Bending, Drawing, or Shearing Define the various joining processes in manufacturing Define the elements that make up the manufacturing costs for a plastic injection molded part: part material cost, equipment operating cost. 		

Course Number: LEOT-465

Course Objective	Competencies
	 Define the elements that drive tooling costs for an injection-molded part: part geometry, mold closure direction, and parting surface location. Visualize how the effects of changing part geometry, mold closure direction, and parting line selection can affect tooling costs.