Course Objective	Competencies
1. Learn to export CAM simulations to full machine	• Export fixtures to appropriate database.
simulator	• Export stock models to appropriate database.
	• Export part models to appropriate database.
	• Set export coordinate systems.
	• Set Work Coordinate System names and numbers.
	• Simulate to detect collisions and undesirable cutting
	conditions.
2. Discuss how to set up a CNC machine to replicate the	• Set work offsets to agree with graphics screen
coordinate system created in the cam software	• Read program comments to ensure the part is set up
	correctly
3. Demonstrate an understanding of CAM basics	• Interact with the screen and menu layout for the CAM
	software.
	• Discuss the file structure for CAM software.
	• Discuss how CAD, CNC, and CAM relate.
	• Perform screen manipulation (zoom, pan, etc)
4. Perform CAD/CAM integration (2D Applications)	• Import solid models and create edge curves.
	• Create levels and colors.
	• Translate CAD geometry to the proper CAM origin.
5. Prepare of manufacturing (3D Applications- Solids)	• Transform solids into the proper plane for machining.
	• Verify solid is at the proper XYZ origin.
	• Create additional profile features as required.

Course Number: MET-132

*

6. Perform milling operations on solid models	 Discuss chaining options and where each is appropriate. Understand the difference between climb and conventional milling. Select toolpaths to optimize metal removal rates. Discuss roughing versus finishing toolpaths.
	• Understand types of cutter compensation and their implications at the machine.
7. Perform turning operations on solid models	 Perform face operations. Perform OD and ID turn operations. Perform groove operations. Perform OD and ID threading. Perform successful tool changes to avoid collisions. Demonstrate how to successfully part off.
8. Discuss machining theory	 Demonstrate best practices for removing material without damaging tools and/or creating projectiles. Experiment with different toolpaths to determine optimum cycle time. Discuss implication of tolerances on manufacturing process. Discuss cutting speeds and feeds is applied to different toolpaths.
 Discuss manufacturing processes for different types of holes 	 Standard blind/ through hole. Precision blind/ through hole. Tapped blind/ through hole. Counter-bored blind/ through hole.

• . .

10.Generate G Code using CAM software	 Discuss industry standard terminology contained in a CNC program Identify key "words" in the CNC code and describe their function Identify areas of the gcode that could cause a machine crash
11.Use graphical simulators to verify part quality and detect collisions	 Simulate toolpaths using backplot (without stock removal) Simulate toolpaths using solid simulator (with stock removal) Identify and avoid collisions with part and fixtures