## Springfield Technical Community College

## ACADEMIC AFFAIRS

| Course Number: | MATH 222 | Department: | Mathematics |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Course Title: | Applied Mathematics 2 | Semester: | Spring Year: 1997 |
|  |  |  |  |

Objectives/Competencies

## Course Objective

## Competencies

1. Understand fundamental concepts of polynomial equations.
2. Understand rational exponents.
3. Solve linear inequalities in one and two variables.
4. Identify variable, coefficient, exponent, and the degree of a polynomial.
5. Given x to a unit fraction, $1 / \mathrm{n}$, write this as the n th room of x.
6. Given $x$ to the $a / b$ power, write this as the bth root of $x$ to the a power.
7. Verify that the nth root of $x$ is a if and only if a to the nth power is x .
8. Given an inequality in two variables, graph the boundary line and shade in the half-plane that contains the solution set.
9. Define test point.
10. Use test point to determine the half-plane containing the solution set.

## Course Objective

4. Recognize graphs that represent functions.
5. Be able to compute the difference quotient.
6. Find the derivative of a function using the definition.
7. Recognize discontinuity in the graphs of some rational functions.
8. Understand and use derivative notation.
9. Understand and use fundamental rules of differentiation.

## Competencies

1. Use the vertical line test to determine whether or not a relation is a function.
2. Test a set or ordered pairs to determine whether or not they are a function.
3. Compute $f(a)$ for a function, where $a$ is a real number.
4. Compute $f(a+h)$ for a function.
5. Compute $f(a+h)-f(a)$.
6. Compute $(f(a+h)-f(a)) / h$ and simplify.
7. Compute the limit of simple functions.
8. Compute derivatives using the limit as h approaches zero of first, second, and third degree polynomials in x.
9. Given a rational function, determine whether or not there are points of discontinuity.
10. Factor a rational expression and reduce whenever possible
11. Evaluate rational expressions that are indeterminate in form.
12. Reduce rational expressions by eliminating common factors.
13. Understand that $y^{\prime}, f^{\prime}(x), d f(x) / d x$, and $\operatorname{Dxf}(x)$ refer to finding a derivative.
14. Find the derivatives of the following:

| Course Objective | Competencies |
| :--- | :--- |
|  | $\begin{array}{l}\text { a. x to the nth power } \\ \text { b. the product of two functions } \\ \text { c. the quotient of two functions } \\ \text { d. the chain rule }\end{array}$ |
| e. e to the f(x) power |  |
| f. the natural logarithm of f(x) |  |$\}$


| Course Objective | Competencies |
| :---: | :---: |
| 13. Integrate basic functions. | 3. Solve problems involving exponential growth and decay. <br> 1. Integrate the following types of functions: <br> a. polynomial functions <br> b. power functions <br> c. natural logarithms <br> d. exponential functions <br> 2. Find the constant of integration when one functional value of the original function is known. |
| 14. Work definite integral problems. <br> 15. Interpret integration as finding the area under a curve. | 1. Integrate all functions studied in indefinite integration as the integral goes from a to $b$. <br> 2. Recognize that the integral of $f(x) d x$ from a to a is zero. <br> 1. Find the integral of $f(x) d x$ as $x$ goes from a to $b$ as an area problem where the integral is the area function bounded by $f(x)$, the axis between $a$ and $b$. |

