SPRINGFIELD TECHNICAL COMMUNITY COLLEGE ## **ACADEMIC AFFAIRS** | Course Number: | CIVL 430 | Department: | Civil Engineering Technology | | | |----------------|----------------------------|-------------|------------------------------|------------|------| | С Т'41 | Towns and the Eurice | G | G | X 7 | 1000 | | Course Title: | Transportation Engineering | Semester: | Spring | Year. | 1999 | ## **Objectives/Competencies** | Course Objective | Competencies | | | |---|--|--|--| | Students will understand the basics of earthwork as related to road/highway work. | Students will be able to demonstrate earthwork calculations using: a. The Borrow-Pit method. b. The Average End Area method. c. The Prismoidal Formula. d. The Planemeter. Students will be able to draw cross-sections using the coordinate method. Students can demonstrate the marking of grade-stakes. | | | | 2. Students will understand the fundamentals of highway geometric design. | Students will be able to demonstrate the ability to design the following: a. Simple Horizontal Curve. b. Compound Horizontal Curve. c. Simple Vertical Curve. d. Compound Vertical Curve. e. The Passing of a Vertical Curve through a fixed point. Students will be able to calculate both stopping and | | | Course Number: CIVL 430 Page 2 | Course Objective | Competencies | | | |---|---|--|--| | | passing right distances. | | | | 3. Students will understand the basics of pavement thickness design. | Students will be able to identify the material components of both flexible and rigid pavements. Students will be able to make basic pavement thickness calculations for flexible pavements using: The "Full-Depth" method. The Conventional Method. Students will be able to make basic pavement thickness calculations for rigid (Portland Cement Concrete) pavements. | | | | 4. Students will understand the fundamentals of parking lot design. | 1. Students will demonstrate parking lot lay outs using curent criteria. | | | | 5. Students will understand the fundamentals of intersection design based on AASHTO criteria. | 1. Students will prepare drawings of:a. At-grade intersections.b. Grade separations. | | |